YES 0.911 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ IFR

mainModule List
  ((delete :: Bool  ->  [Bool ->  [Bool]) :: Bool  ->  [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy _ _ [] []
deleteBy eq x (y : ys if x `eq` y then ys else y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



If Reductions:
The following If expression
if eq x y then ys else y : deleteBy eq x ys

is transformed to
deleteBy0 ys y eq x True = ys
deleteBy0 ys y eq x False = y : deleteBy eq x ys



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule List
  ((delete :: Bool  ->  [Bool ->  [Bool]) :: Bool  ->  [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy _ _ [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule List
  ((delete :: Bool  ->  [Bool ->  [Bool]) :: Bool  ->  [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule List
  (delete :: Bool  ->  [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy(True, :(False, wu41)) → new_deleteBy(True, wu41)
new_deleteBy(False, :(True, wu41)) → new_deleteBy(False, wu41)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ ATransformationProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy(False, :(True, wu41)) → new_deleteBy(False, wu41)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ ATransformationProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

False(True(wu41)) → False(wu41)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ ATransformationProof

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy(True, :(False, wu41)) → new_deleteBy(True, wu41)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ ATransformationProof
QDP
                            ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

True1(False1(wu41)) → True1(wu41)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: